高级搜素

马田田

当前位置: 首页 > 编辑部 > 编辑 > 马田田
  • 姓名:马田田
  • 学历:理学博士
  • 职称:副编审
  • 籍贯:山东济宁
  • 邮箱:matt@cnu.edu.cn
  • 电话:010-68902450,68902451

编辑工作

数学和计算机学科编辑,负责数学、计算机和信息工程等学科的研究论文和教育论文的评审、编辑和出版工作。



研究方向

非线性微分方程的定性问题,稳定性、周期解、无界解等。



教育及工作背景

2008/9–2011/7,首都师范大学应用数学专业, 获得博士学位.

2005/9–2008/7,曲阜师范大学应用数学专业,获得硕士学位.

2011/7-2013/7,北京师范大学数学科学学院博士后流动站.

2013/8-至今,首都师范大学学报编辑部,副编审.



参与的基金项目

(1)国家自然科学基金青年基金(编号:11501381,二阶非线性微分方程的周期解与无界解),2016/01-2018/12,18万,主持,已结题。

(2)北京市教育委员会科技计划重点项目(编号:KZ201310028031,非线性微分方程中的一些定性问题),50万,参加,已结题。

(3)中国博士后科学基金面上资助(编号:2012M510341,非线性微分方程的定性问题),5万,主持,已结题。



发表的论文

1.马田田.具有不对称非线性项平面系统周期解的存在性(上)[J].首都师范大学学报(自然科学版),2019,40(2):6-9.

2.马田田.具有不对称非线性项平面系统周期解的存在性(下)[J].首都师范大学学报(自然科学版),2019,40(3):6-13.

3.马田田,张铁荟,黄艳.共振条件下具有奇异性和无界扰动Duffing方程的周期解(上)[J].首都师范大学学报(自然科学版),2017,38(6):1-4.

4.马田田,张铁荟,黄艳.共振条件下具有奇异性和无界扰动Duffing方程的周期解(下)[J].首都师范大学学报(自然科学版),2018,39(1):1-7.

5.Tiantian Ma, Zaihong Wang. Periodic solutions of Liénard equations withresonant isochronous potentials[J].Discrete and Continuous DynamicalSystems,Ser.A,2013,33(4):1563-1581.(SCI)

6.Tiantian Ma.Positive periodic solution of second order coupled systemswith singularities[J].Abstract and Applied Analysis,2013(2013),Article ID 504573, 10 pages.(SCI)

7.Tiantian Ma.Periodic solutions of Rayleigh equations with two deviatingArguments[J].International Journal of Mathematical Analysis andApplications, 2013,7(25): 1225-1237.

8.Tiantian Ma.Periodic solutions of the second order damped systems withsingularities and deviating arguments[J].Applied Mathematics andComputation[J].2014,227: 148-155.(SCI)

9.马田田.共振条件下扰动等时哈密顿系统周期解的多解性[J].北京师范大学学报,2013,49(5):443-444.

10.Zaihong Wang,Tiantian Ma.A continuation lemma and the existence of periodic solutions of perturbed planar Hamiltonian systems with sub-quadratic potentials[J].Topological Methods in Nonlinear Analysis[J].2018,DOI: 10.12775/TMNA.2018.037.(SCI)

11.Zaihong Wang,Tiantian Ma.Periodic solutions of Rayleigh equations with singularities[J]. Boundary Value Problems, 2015(2015):154.(SCI)

12.Zaihong Wang, Tiantian Ma. Periodic solutions of planar Hamiltonian systems with asymmetric nonlinearities[J]. Boundary Value Problems, 2017(2017):46.(SCI)

13.Zaihong Wang,Tiantian Ma. Infinitely many periodic solutions of planar Hamiltonian systems via the Poincaré–Birkhoff theorem, Boundary Value Problems[J]. 2018(2018):102.(SCI)

14.Anna Capietto, Walter Dambriso,Tiantian Ma, Zaihong Wang. Unboundedsolutions and periodic solutions of perturbed isochronous Hamiltoniansystems at resonance[J].Discrete and Continuous Dynamical SystemsSer.A,2013,33(5):1835-1856.(SCI)

15.Zaihong Wang, Jin Li,Tiantian Ma.An erratum note on the paper:positiveperiodic solution for Brillouin electron beam focusing system[J].Discrete and Continuous Dynamical systems, Ser. B, 2013,18(7): 1995-1997.(SCI)

16.Zaihong Wang, Jin Li,Tiantian Ma.Periodic solutions of Duffing equationwith an asymmetric nonlinearity and a deviating argument[J].Abstract andApplied Analysis,2013(2013) Art. ID 507854.(SCI)

17.Zaihong Wang,Tiantian Ma.Existence and multiplicity of periodic solutions of semilinear resonant Duffing equations with singularities[J]. Nonlinearity,2012( 25):279-307.(SCI

18.Tiantian Ma, Zaihong Wang, Existence and infinity of periodic solutions of some second order differential equations with isochronous potentials[J].Z. Angew. Math. Phys.,2012(63):25-49.(SCI

19.Tiantian Ma,Zaihong Wang,A continuation lemma and it's applications to periodic solutions of Rayleigh differential equations with subquadratic potential conditions[J].J. Math. Anal. Appl.,2012(385):1107-1118.(SCI

20.Tiantian Ma,Zaihong Wang,Periodic solutions of some second order differential equations with desultorily subinear nonlinearities[J].Nonlinear Analysis, T. M. A.,2011(74):41-49.(SCI,EI

21.Tiantian Ma, Periodic solutions of Rayleigh equations via time maps[J].Nonlinear Analysis, T. M. A.,2012(75):4137-4144.(SCI,EI

22.马田田,赵增勤.二阶奇异微分方程组边值问题两个正解的存在性[J].应用泛函分析学报,2009(3):224-228.(EI

23.马田田,赵增勤.非线性微分方程组边值问题多个正解的存在性[J].工程数学学报,2009(5):1-7.(EI

24.马田田,赵增勤.2n阶奇异微分方程边值问题正解的存在性[J].曲阜师范大学学报(自然科学版),2008(1):25-28.