Entanglement witness optimization inC3⊗Cdsystem*
量子信息是近年来发展非常迅速的多学科交叉研究领域,量子纠缠是量子信息中重要的研究内容 .1997 年,Horodecki[1]给出了束缚纠缠态的例子,并在量子系统上构造了一类positive partial transpo‐sition(PPT)纠缠态;Zou等[2]讨论了非马尔可夫效应和失谐对量子熵不确定关系和纠缠见证下界的影响;2015年,Saideh等[3]利用PPT准则揭示了量子相关性的存在,并将基于方差的纠缠见证推广到高维量子系统;Tan等[4]构造了多体量子系统中的纠缠见证;Bruns等[5]应用 Choi-Jamiolkowski同构,揭示了两体量子态的纠缠特性;Coto等[6]利用基态生成了多体最大纠缠态;Cruz[7]给出了纠缠见证、纠缠生成、贝尔不等式违背和几何量子失谐的分析解释;Bartkiewicz等[8]分析了任意双量子比特的贝尔非局域性和纠缠见证的测量度;Kühn等[9]推导出验证非高斯纠缠准则,且构造方法能够验证复杂光状态的两体和多体纠缠;Deb和 Ghosh[10]利用并发度和纠缠见证刻画纠缠;2017年,Oudot等[11]揭示了空间分裂自旋压缩在玻色-爱因斯坦凝聚态中的关系,并由此得到了最优的纠缠见证;Akbari-Kourbolagh和Azhdargalam[12]构造了三量子比特的纠缠见证,且这些见证能够更有效地检测束缚纠缠态;Li等[13]利用互无偏测量构造了纠缠见证;Amaro 和 Müller[14]基于图态和稳定态之间的局域幺正等价,构造了局域纠缠见证;Zhao等[15]研究了多体量子态的纠缠性质;Shen等[16]证明了对C2⊗ Cd上任意一个纠缠见证都可以用非线性方法进行改进,且改进后的纠缠见证优于原来的纠缠见证.纠缠见证为判别量子态是否纠缠提供了一个重要的工具,对纠缠见证进行优化是人们日益关注的研究热点.
本文借助了新的原理和方法,即对C3⊗ Cd系统中的纠缠见证进行非线性改进,并用实例证明了非线性改进后的纠缠见证可以判别更多的纠缠态,得到优化后的纠缠见证在量子态纠缠判别上具有较好优越性的结论.
表1 对a的不同取值下的ρp的纠缠判别
态的参数(a)纠缠范围(p)0.1 0.2 0.3 0.4[0.0 7 1 8,1.0 0 0 0][0.0 9 6 7,1.0 0 0 0][0.1 0 9 4,1.0 0 0 0][0.1 1 7 1,1.0 0 0 0]
本文研究了C3⊗ Cd量子系统中的纠缠见证,给出了其非线性改进,不仅能用较少的观测量判别纠缠,而且改进后的纠缠见证能判别出更多的纠缠态,并用实例验证了此方法有较好的优越性.
(1)给出了厄米算子作为纠缠见证的充要条件;
(2)研究了C3⊗ Cd上算子半正定的充要条件,并证明了对满足条件的任意态ρ,可用非线性改进后的纠缠见证进行判别;
(3)给出对C3⊗ Cd中任意态,W半正定的等价条件,并用例子说明经过非线性改进后的纠缠见证可以判别量子态是否纠缠,且能判别出更多的纠缠态.
[1]HORODECKI P.Separability criterion and inseparable mixed states with positive partial transposition[J].Physics Letters A,1997,235(5):333-339.
[2]ZOU H M,FANG M F,YANG B Y,et al.The quantum entropic uncertainty relation and entanglement witness in the two-atom system coupling with the non-Markovian environments[J].Physica Scripta,2014,89(11):115101-115108.
[3]SAIDEH I,RIBEIRO A D,FERRINI G,et al.General dichotomization procedure to provide qudit entanglement criteria[J].Physical Review A,2015,92(5):052334.
[4]TAN E Y Z,KASZLIKOWSKI D,KWEK L C.Entanglement witness via symmetric two-body correlations[J].Physical Review A,2016,93(1):012341.
[5]BRUNS D,SPERLING J,SCHEEL S.Witnessing random unitary and projective quantum channels:complementarity between separable and maximally entangled states[J].Physical Review A,2016,93(3):032132.
[6]COTO R,ORSZAG M,EREMEEV V.Generation and protection of a maximally entangled state between many modes in an optical network with dissipation[J].Physical Review A,2016,93(6):062302.
[7]CRUZ C.Quantum correlations and Bell’s inequality violation in a Heisenberg spin dimer via neutron scattering [J]. International Journal of Quantum Information,2017,15(5):1750031-1750042.
[8]BARTKIEWICZ K,LEMR K,ČERNOCH A,et al.Bell nonlocality and fully entangled fraction measured in an entanglement-swapping device without quantum state tomography[J].Physical Review A,2017,95(3):030102.
[9]KÜHN B,VOGEL W,SPERLING J.Displaced photonnumber entanglement tests[J].Physical Review A,2017,96(3):032306.
[10]DEB M,GHOSH A K.Thermally stable multipartite entanglements in the frustrated Heisenberg hexagon[J].The European Physical Journal D,2017,71(6):1-14.
[11]OUDOT E,BANCAL J D,SCHMIED R,et al.Optimal entanglement witnesses in a split spin-squeezed Bose-Einstein condensate[J].Physical Review A,2017,95(5):052347.
[12]AKBARI-KOURBOLAGH Y,AZHDARGALAM M.Entanglement witnesses for families of the bound entangled three-qubit states[J].International Journal of Quantum Information,2018,16(3):1850025-1850030.
[13]LI T,LAI L M,FEI S M,et al.Mutually unbiased measurement based entanglement witnesses [J].International Journal of Theoretical Physics,2019,58(12):3973-3985.
[14]AMARO D,MÜLLER M.Design and experimental performance of local entanglement witness operators[J].Physical Review A,2020,101(1):012317.
[15]ZHAO H,ZHANG M M,JING N H,et al.Separability criteria based on Bloch representation of density matrices[J].Quantum Information Processing,2020,19(14):13-20.
[16]SHEN S Q,LIANG J M,LI M,et al.Nonlinear improvement of qubit-qudit entanglement witnesses[J].Physical Review A,2020,101(1):012312.
[17]TERHAL B M.A family of indecomposable positive linear maps based on entangled quantum states[J].Linear Algebra and its Applications,2001,323(1/2/3):61-73.
[18]HORN R A,JOHNSON C R.Matrix analysis[M].2nd ed.Cambridge:Cambridge University Press,1985:429-497.
[19]ZHAO M J,MA T,FEI S M,et al.Inequalities detecting quantum entanglement for2 ⊗ dsystems[J].Physical Review A,2011,83(5):052120.